Semilocal Convergence of a Three Step Fifth Order Iterative Method under Höolder Continuity Condition in Banach Spaces

نویسندگان

  • Ramandeep Behl
  • Prashanth Maroju
  • S. S. Motsa
چکیده

In this paper, we study the semilocal convergence of a fifth order iterative method using recurrence relation under the assumption that first order Fréchet derivative satisfies the Hölder condition. Also, we calculate the R-order of convergence and provide some a priori error bounds. Based on this, we give existence and uniqueness region of the solution for a nonlinear Hammerstein integral equation of the second kind. Keywords—Hölder continuity condition, Fréchet derivative, fifth order convergence, recurrence relations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence theorems of multi-step iterative algorithm with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces

The purpose of this paper is to study and give the necessary andsufficient condition of strong convergence of the multi-step iterative algorithmwith errors for a finite family of generalized asymptotically quasi-nonexpansivemappings to converge to common fixed points in Banach spaces. Our resultsextend and improve some recent results in the literature (see, e.g. [2, 3, 5, 6, 7, 8,11, 14, 19]).

متن کامل

Semilocal Convergence for a Fifth-Order Newton's Method Using Recurrence Relations in Banach Spaces

We study a modified Newton’s method with fifth-order convergence for nonlinear equations in Banach spaces. Wemake an attempt to establish the semilocal convergence of this method by using recurrence relations. The recurrence relations for the method are derived, and then an existenceuniqueness theorem is given to establish the R-order of the method to be five and a priori error bounds. Finally,...

متن کامل

Common fixed points of a finite family of multivalued quasi-nonexpansive mappings in uniformly convex Banach spaces

In this paper, we introduce a one-step iterative scheme for finding a common fixed point of a finite family of multivalued quasi-nonexpansive mappings in a real uniformly convex Banach space. We establish weak and strong convergence theorems of the propose iterative scheme under some appropriate conditions.

متن کامل

Iterative Process for an α- Nonexpansive Mapping and a Mapping Satisfying Condition(C) in a Convex Metric Space

We construct one-step iterative process for an α- nonexpansive mapping and a mapping satisfying condition (C) in the framework of a convex metric space. We study △-convergence and strong convergence of the iterative process to the common fixed point of the mappings. Our results are new and are valid in hyperbolic spaces, CAT(0) spaces, Banach spaces and Hilbert spaces, simultaneously.

متن کامل

Solving System of Nonlinear Equations by using a New Three-Step Method

In this paper‎, ‎we suggest a fifth order convergence three-step method for solving system of nonlinear equations‎. ‎Each iteration of the method requires two function evaluations‎, ‎two first Fr'{e}chet derivative evaluations and two matrix inversions‎. ‎Hence‎, ‎the efficiency index is $5^{1/({2n+4n^{2}+frac{4}{3}n^{3}})}$‎, ‎which is better than that of other three-step methods‎. ‎The advant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016